Study of Tamiflu Sensitivity to Variants of A/H5N1 Virus Using Different Force Fields

نویسندگان

  • Trang Truc Nguyen
  • Binh Khanh Mai
  • Mai Suan Li
چکیده

An accurate estimation of binding free energy of a ligand to receptor ΔG(bind) is one of the most important problems in drug design. The success of solution of this problem is expected to depend on force fields used for modeling a ligand-receptor complex. In this paper, we consider the impact of four main force fields, AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L, on the binding affinity of Oseltamivir carboxylate to the wild-type and Y252H, N294S, and H274Y mutants of glycoprotein neuraminidase from the pandemic A/H5N1 virus. Having used the molecular mechanic-Poisson-Boltzmann surface area method, we have shown that ΔG(bind), obtained by AMBER99SB, OPLS-AA/L, and CHARMM27, shows the high correlation with the available experimental data. They correctly capture the binding ranking Y252H → WT → N294S → H274Y observed in experiments (Collins, P. J. et al. Nature 2008, 453, 1258). In terms of absolute values of binding scores, results obtained by AMBER99SB are in the nearest range with experiments, while OPLS-AA/L, which is applied to study binding of Oseltamivir to the influenza virus for the first time, gives rather big negative values for ΔG(bind). GROMOS96 43a1 provides a lower correlation as it supports Oseltamivir to be more resistant to N294S than H274Y. Our study suggests that force fields have pronounced influence on theoretical estimations of binding free energy of a ligand to receptor. The effect of all-atom models on dynamics of the binding pocket as well as on the hydrogen-bond network between Oseltamivir and receptors is studied in detail. The hydrogen network, obtained by GROMOS, is weakest among four studied force fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase

The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔG(bind) of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔG(bind) is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinati...

متن کامل

Neuraminidase inhibitor R-125489--a promising drug for treating influenza virus: steered molecular dynamics approach.

Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral...

متن کامل

Expression of HA1 antigen of H5N1 influenza virus as a potent candidate for vaccine in bacterial system

The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. In this study, bacterial system has been developed for expression and purification of properly folded HA1 antigen as a rapid response to emerging pandemic strains. Here, a recombinant H5N1 (A/Indone...

متن کامل

Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy

The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermo...

متن کامل

Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus.

The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 51 9  شماره 

صفحات  -

تاریخ انتشار 2011